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» Many popular methods in machine learning and statistics are linear,
e.g. linear (ridge) regression, SVM, logistic regression, PCA, ...

» However, the real world is often not linear.

> Key idea: Embed data into a high- (often infinite-)dimensional
space, carry out a linear method there, and project back down to the
original space to obtain a non-linear model.
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Some Notations
» Denote the domain by X.
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Kernels and RKHS

Some Notations
» Denote the domain by X.

> We call a symmetric, positive-definite function k: X x X - R a
kernel. This means that

> for any x1,x € X, k(x1,x2) = k(x2, x1); and
> for any ai,...,an € Rand x1,...,x, € X, D70, 77 ciak(xi, x;) > 0.
» Each kernel k is associated to a unique reproducing kernel Hilbert
space (RKHS) H, a space of functions X — R.
> For each x € X, k(x,-) € H.
» In fact, H is the closure of the linear span of {k(x,:) : x € X'}.
» Forany f € H, x € X, f(x) = (f, k(x,"))n

Examples of Kernels for X = R¢
> Linear kernel: k(x;,x2) = x1 - x2, H = R7.
> Polynomial kernel: k(xi,x) = (x1 - x2 + ¢)™, dim(#) = (71™m).

> Gaussian kernel: k(x;,x) = e V=<l dim(#) = .



Embedding Data-points

Recall,

> Key idea: Embed data into a high- (often infinite-)dimensional
space, carry out a linear method there, and project back down to the
original space to obtain a non-linear model.

We can embed any x € X into H by x — k(x, !

X H

By the reproducing property, (k(x,-), k(x',))n = k(x,x’).



Example: Classification
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Example: Classification
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Example: Classification

Data in Input Space
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Kernel Feature Map

o (x1,%) — (X127X22,\/§X1X2)
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Kernel Feature Map

b (xa, %) — (X3, X3, V2x1%)

Data in Input Space
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Kernel Feature Map

b (xa, %) — (X3, X3, V2x1%)

Data in Input Space
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Kernel Feature Map

b (xa, %) — (X3, X3, V2x1%)

Data in Input Space
Data in Feature Space
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But observe that

(P(x),(2))rs = X727 + X525 + 2(x10)(z122) = (121 + x022)* = (x - 2)?

Model in primal and dual form:

F)=wio(x) = Ffx)=) ai{dlx) ¢(x))ss

i=1 =(xi-x)2=k(xi,x)
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Embedding Distributions
> Recall, point embeddings: x — k(x,:) : X — H.
» A random variable X taking values in X, with distribution P.
» We can embed P into H via “kernel mean embedding"”:

P s pp = E[k(X,")] = /X k(x,-)dP(x).

» Given samples Xi, ..., X, from X, an empirical estimate of up can
easily be obtained:
. 1
fip = = Z k(Xi, ).

n-
i=1

v

EXNP[f(X)] = <f, ,UP>7-L for any feH.
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Characteristic Kernels

> Def: A kernel k is characteristic if the map P — pp is injective.

> A kernel k being characteristic means that the corresponding RKHS
H is “rich enough” to capture all information about a distribution.

Examples

> If k(x1,%x) = x1 - xo, then up = E[k(X, )] = E[X].
So pp only captures the expectation of P, and so k is not
characteristic.

> If k(x1, %) = e =xl’ K can be shown to be characteristic.




Maximum Mean Discrepancy
» The maximum mean discrepancy (MMD) is defined as
MMD(P, Q) = [l11p — rially -

> With a characteristic kernel, MMD(P, Q) =0 <— P = Q!

» With samples Xi, ..., X, from P and Y1, ..., Y, from Q, we can use
the MMD to carry out a two-sample test:

MMD(P, Q) = ZZk Xi, X;) + zm:zm:k(v,
i=1 Hé, ( 71) i=1 ji
2
—ﬁ;;k(x Y;)




Witness Functions
> Recall, MMD(P, Q) = [lip — 1ol
» The normand pp — pg belongs to H, i.e. it is a function X — R.

F(t) o< pp(t) — nq(t)

» This is called the (unnormalised) witness function, and by evaluating
it at a particular point, we can identify regions in which the density of
one distribution dominates the other.

Prob. densities and f*(t)

-6 -4 -2 0 2 4 6

Figure: A Kernel Two-Sample Test, Gretton, Borgwardt, Rasch, Schélkopf and
Smola, JMLR 2012.
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Embedding Conditional Distributions

vvyyy

Recall,

> point embeddings x — k(x,:): X — H and
> distribution embeddings X — E[k(X,-)].

What about conditional distributions?

Let X and Z be random variables taking values in domains X and Z.
Let Px|z be the conditional distribution of X given Z.

We define the kernel conditional mean embedding of X given Z as

HPy ; = E[k(X7') | Z]‘

Unlike point and (unconditional) distribution embeddings, this is not
a single element in H, but a RV depending on the value of Z.



Further Information & References

» Scholkopf, B. and Smola, A., Learning with Kernels. MIT Press, 2002.

» Muandet, K., Fukumizu, K., Sriperumbudur, B. and Schélkopf, B.,
Kernel Mean Embedding of Distributions: A Review and Beyond.
Foundations and Trends in Machine Learning, 2017.

» Today Talk: Park, J., Shalit, U., Scholkopf B., and Muandet
K.Conditional Distributional Treatment Effect with Kernel Conditional
Mean Embeddings and U-Statistic Regression. ICML 2021.

» Recommended: Kallus, N. and Oprescu, M. Robust and Agnostic
Learning of Conditional Distributional Treatment Effects.
ArXiv:2205.11486, 2022.
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Problem Set-Up: Potential Outcomes Framework

Notations

Probability Space (£, F, P)

Treatment Assignment Z : Q — {0,1}

Covariate Variable X : Q — X

Potential Outcome under Control Yp:Q — Y
Potential Outcome under Treatment Y;: Q — Y
Observed Outcome Y =(1—2Z)Yo 4+ ZY1

Examples

vVvyVvVvyyVvyysy

Drug administration
Patient Characteristics
Measurement without drug
Measurement with drug

Observed measurement
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Problem Set-Up: Potential Outcomes Framework

Notations Examples
Probability Space (£, F, P)
Treatment Assignment Z : Q — {0,1}
Covariate Variable X : Q — X

» Drug administration

>
Potential Outcome under Control Yy :Q — Y » Measurement without drug

>

>

Patient Characteristics

Potential Outcome under Treatment Y; : Q — Y Measurement with drug

Observed Outcome Y =(1—2Z)Yo 4+ ZY1 Observed measurement

» We assume either the randomised control trial setting, or strong
ignorability:
» unconfoundedness Z L (Yp, Y1) | X; and
> overlap0 < e(X)=P(Z=1|X)=E[Z| X] < L
» Quantities commonly used to measure treatment effect:

> Average Treatment Effect (ATE) E[Y:1 — Y{]
> Conditional Average Treatment Effect (CATE) E[Y1 — Yo | X]



Treatment Effect Quantification

But...

— E"x]

204

» Estimating ATE and CATE is inherently a problem of comparing two
means, and as such, is only meaningful if the corresponding variances
are given.
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Treatment Effect Quantification

But...

— E"x]

204

» Estimating ATE and CATE is inherently a problem of comparing two
means, and as such, is only meaningful if the corresponding variances
are given.

» Other distributional aspects could also be of interest, e.g. skewness.
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Progresa: Conditional Cash Transfer programme in Mexico

» Investigation of how the programme affects the average food

consumption.

Table 4. Treatment effects for all people living in treatment villages.

Estimate

Lower Bound

Upper Bound

ME on mean

25.900

14.730

31.130

Notes: Shown are point estimates for marginal effects of the treatment at means (ME) and corresponding 95%

bootstrap confidence interval bounds based on 499 bootstrap replicates. n = 14, 740.

Figure: Treatment effects beyond the mean using distributional regression:
Methods and guidance, Hohberg, Piitz and Kneib, 2020
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consumption.

Table 4. Treatment effects for all people living in treatment villages.

Estimate Lower Bound Upper Bound
ME on mean 25.900 14.730 31.130
ME on variance 4828.316 820.841 7750.220
ME on Gini coefficient 0.007 -0.006 0.021
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Progresa: Conditional Cash Transfer programme in Mexico

» Investigation of how the programme affects the average food

consumption.

Table 4. Treatment effects for all people living in treatment villages.

Estimate Lower Bound Upper Bound
ME on mean 25.900 14.730 31.130
ME on variance 4828.316 820.841 7750.220
ME on Gini coefficient 0.007 -0.006 0.021
ME on Atkinson index (e = 1) 0.006 -0.005 0.018
ME on Atkinson index (e = 2) 0.012 -0.004 0.034
ME on Theil index 0.007 -0.012 0.026
ME on vulnerability -0.056 -0.092 -0.040

Notes: Shown are point estimates for marginal effects of the treatment at means (ME) and corresponding 95%

bootstrap confidence interval bounds based on 499 bootstrap replicates. n = 14, 740.

Figure: Treatment effects beyond the mean using distributional regression:
Methods and guidance, Hohberg, Piitz and Kneib, 2020
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Conditional Distributional Treatment Effect

» Definition: Let D be some distance function between probability
measures. We define the conditional distributional treatment effect
(CoDITE) associated with D as

Up(x) = D(Py,|x=x, Pyy|x=x)-

» Depending on the distance D chosen, we can extract and compare
different aspects of the control and treatment distributions.
> Examples:

> We recover the CATE by setting D(Py,x, Pyv;1x) = E[Yo — Y1 | X].

» Other works have considered D capturing quantiles, cumulative
distribution functions or specific distributional parameters, such as
mean, variance, skewness, etc.

» In our work, we characterise distributions via kernel mean embeddings.

» The CoDiTE has a causal interpretation under the same assumptions,
i.e. RCT or strong ignorability.



Testing Equality of Control and Treatment Groups
CoDiTE with MMD
> Recall, CoDITE: Up(x) = D(Py,jx=x: Py;|x=x)-

> Let D be the MMD, so that Up(x) represents the MMD between the
control and treatment distributions:

Ummp (X) = [lbvy x=x — Holx=x|l7-

> By integrating over X, we obtain a statistic to test for the equality
between the distributions of control and treatment groups:

t=E [||MY1|X - MYO\X”?H] .

=
o

o
)

=4
@

o
=

o
N

Proportions of tests rejected

o
o

Prxvs Prx  Pryx Vs Prx  Prjx Vs Prx

Hypothesis




Exploratory Analysis of Conditional Densities
CoDiTE with MMD

> Recall, CODITE with MMD: Uninip(x) = [|2vs1x—x — Fyo|x—x]l 3.

» Instead of taking the norm in #, we can evaluate the normand
(recall, it is the witness function) at each value of y.

£ (y) o pyy x=x(¥) = tvox=x(¥)

» We can then visually compare the conditional densities of the control
and treatment groups.

£[Yo|X]
£[n|X]
e Y
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U-Statistic Regression

> Usual regression estimates the conditional mean, E[Y|X].

» But other quantities of interest, most prominently the conditional
variance, can be expressed as a generalisation, as conditional
U-statistics:

E[h(Y1, .oy Ye) | Xiy ooy Xi] -
> For example, h(Y1, Y2) = 2(Y1 — Y2)? gives the conditional variance.

» We generalise kernel ridge regression accordingly, to estimate the
conditional variance.

£{Yo|X] ° 231
201 £Yol —— True std

— Hri|x] % ]
e o 0¥ (200 | Estimated std(Yo|X)
---- Estimated std(Y1|X)

15 A

10

=10+ T T T T T 0-— T T T T T
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Semi-Synthetic IHDP Data

Bayesian Nonparametric Modeling for Causal Inference, Hill, 2011

» Real covariates, simulated outcome for control and treatment.
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Semi-Synthetic IHDP Data

Bayesian Nonparametric Modeling for Causal Inference, Hill, 2011
» Real covariates, simulated outcome for control and treatment.

» Existing simulations in the context of CATE estimation: constant
Gaussian noise across the entire covariate space.

» Using the same mean response surfaces, we simulate the data under
three settings:

» Small Noise (SN) Noise is small across the covariate space, so that
CATE translates to a meaningful treatment effect.

> Large Noise (LN) Noise is large such that the mean difference is
negligible in comparison.

> Heterogeneous Noise (HN) Noise is heterogeneous across the
covariate space, resulting in meaningful treatment effect for some
parts of the population and not others.

(a) Hypothesis Test of Pyx = Py, x (b) Witness Functions for Setting SN (c) Witness Functions for Setting LN (d) Witness Functions for Setting HN

50| — Witness ata
— Witness atb

50 — Witness ata 50{ — Witness ata
— Witness at b — Witness atb

0] Ao o

Proportion:

Setting SN Setting LN Setting HN 2 o 2 a 6 S0 25 0 25 50 60 -0 20 0 20 40
Y




Discussion
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Remarks & Limitations

v

A policy intervention or a counterfactual change can have non-trivial
effects on a population.

Compared to the mean effects, the distributional effects can be harder
to interpret (conditional witness function and U-statistic regression).

Distributional considerations of treatment effect is pertinent also in
the gold standard randomised control setting, as well as the more
common observational studies.

On the other hand, we made no effort to account for selection bias.
Facilitate an algorithmic decision making, e.g., counterfactual fairness.

Our methods are all based on variants of kernel ridge regression, and
as such, are sensitive to the choice of hyperparameters.

Also, when the covariate space becomes high-dimensional,
performance deteriorates rapidly.
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