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Reliable Decision Making and
Causal Inference with Kernels

Krikamol Muandet ( Max Planck Institute for Intelligent Systems — CISPA Helmholtz Center )
g @krikamol E kKrikamol@tuebingen.mpg.de
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Agenda

Part I: Basic of Causal Inference (14:00 - 15:30)
* A definition of causal effects
« Randomised experiments
* Observational studies
* Graphical causal models

Part ll: Advanced Topics (16:00 - 17:30)
* Distributional treatment effect
* |nstrumental variable (V)
* Proximal causal learning
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Basic of Causal Inference
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From Prediction to Decision




From Prediction to Decision




From Prediction to Decision




Reliable Decisions

Is a new vaccine effective?




Definition of Causal Effects

Individual Treatment Effects

A : Treatment / Intervention (1: treated, 0: untreated)

Y*“ : Counterfactual outcome (1: death, O: alive)

Y :Observed outcome

Consistency assumption Individual treatment effect (ITE)
Y — YA Ya=1 # Ya=()



Definition of Causal Effects

Average Causal Effect

Ya:O Y= 1

Alice 1 0

Bob | o | P
Caroline | 1 | o0
Dave | | o
Eic | o o
Frederic | 1 | 0
Greg | o | o
Henry | o o

P(Y°=! = 1) : The risk of death if treated
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P(Y?=" = 1) : The risk of death if untreated

Average causal effect
P(Y= =1)# P(Y*=Y = 1)



Definition of Causal Effects
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Causation and Association

A Y
Alice 0 1
Bob | I P
Caroline | 0 | o
Dave | | o
Eic | o | o
Frederic | 1 | 0
Greg | o | o
Henry | o o

P(Y=1|A = 1) : Therisk of death in the treated group
P(Y = 1|A = 0) : The risk of death in the untreated group

Association between A and Y
PY=1|A=1)#PY=1|A=0)



Definition of Causal Effects

Causation # Association

Population

Treated @ Untreated

Causation 75 Association

@ U

P(Y*=! = 1) P(Y*=0 = 1) PY=1[A=1) PX¥=1|A=0)
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Randomised Experiments
Causation = Association

Treated 'A Untreated Untreated " Treated
PY=1|A=1)=0.3 PY=1|A=1)=2?
PY=1|A=0)=0.56 PY=1|A=0)="?

Exchangeability condition: Y“ 1. A for all a

PY'=1|A=1)=PY*=1|A = 0)
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Randomised Experiments

Causation = Association

Population

Treated @ Untreated

Causation Association

@ U

P(Y*=l =1) P(Y*=0 = 1) P(Y=1|A=1) P(Y=1|A =0)




Conditional Randomisation

X A Y
Alice 0 0 1
Bob | o o .
Caroline| 1 | o 0
Dave | 0 | o 0
Eic | o | o | 0
Frederic| 1 | o 0
Greg | o | o 0
Henry | 1 | o | o
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Design 1: Randomisation with 65% prob.
Design 2: 75% (critical), 50% (non-critical)

PY'=1|A=1,X=1)=PY°=1|A=0,X=1)

Conditional exchangeability
Y¢1U A|X foralla



Computing the Causal Effects

1, =PY*=' =1)-PY*==1)

1. Standardisation

2. Inverse probability weighting (IPW)



Standardisation

Conditional randomisation design

X A Y
Alice 0 0 1
Bob | | 1 1
Caroline| 1 | | 0o
Dave | 1 1 1
Eric | o | 0o | 0o
Frederic| 1 | 1 0o
Greg | 0o | 1 0
Henry | | 0o | 1
lan | 0o | 1 1
Jake | 1 o | 0

P(Y =1
P(Y =1

P(Y =1
P(Y =1

X=0,A=1)=PY*!
X=0,A=0)= Py~

X=1,A=1)=pPY*!
X=1,A=0)=PY*

Standardised mean

P(Y® =

1) = 2 P(Y® =

x€{0,1}

1|X = x)P(X = x)

= Z PY=1|X=x,A=a)PX=x)

x€{0,1}
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Standardisation

P(Y¢=1) = Z PY=1|X=xA=a)PX =x)
b= A

P(YY=1) =[ PY=1|X=x,A=a)P(X =x)dx
X



Inverse Probability Weighting (IPW)
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Inverse Probability Weighting (IPW)
y & v,
PY~= =1 = — S
2n — PA=1|X=x)
—0 1 « 1 -Y,
PY~ =1 =

&1 -PA=1|X=x)



Limitations of Randomised Experiments

* |deal randomised experiments are hard to implement.

* [t can be unethical to conduct randomised experiments

* |tis typically expensive and time consuming.
* Double-blind assignment is impossible.

 Some experiments are infeasible.
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Observational Studies

X A Y
Alice 0 0 1
Bob | o o o
Caroline| 1 | o 0
Dave | 0 | o 0
Eic | o | o | 0
Frederic| 1 | o 0
Greg | o | o 0o
Henry | 1 | o | o
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OBS Studies & COND Randomisation

1. Well-defined intervention (consistency)
2. Conditional exchangeability

3. Positivity

Necessary ingredients
1. ldentifiability conditions
2. Data
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Ildentifiable Non-identifiable

Assumptions Assumptions

Pdata < {T:} Pdata — {Tj,fz, .
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1. Precise definition of the counterfactual outcome Y*
e Heart transplant A = 1 and medical therapy A = (
« The effect of obesity A on the risk of mortality Y

2. The linkage of Y“to Y.



Conditional Exchangeability

YA AlX foralla

* |t holds by design in (conditional) randomised experiments.

* The validity of this assumption rests on domain experts.

* There can always be an unmeasured confounder U.
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O<PA=a|lX=x) <1

* |t is taken for granted in (conditional) randomised experiments.

|t may hold only for X that are required for exchangeability.

* |t can sometimes be empirically verified.



Effect Modification

There is no such thing as the causal effect of treatment

. PY=l =1)=PY*="=1)=0.5

e Male (V = 1) and female (V = ()

. PY=1=1|V=0)=04, P '=1|V=0)=0.6
. PY=lI=1|V=1)=06, PY'=1|V=1)=04

Conditional average treatment effect (CATE)
PY*=! =1|V)# PY*="=1]|V)
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* |ndividual and average causal effects
 Randomised experiments
» Standardisation and inverse probability weighting (IPW)
* Observational studies
* Conditional exchangeability
* Positivity
* Consistency

e Effect modification



Graphical Causal Models

A—Y X—A—Y

* A causal diagram consists of a set of nodes and edges.
* The presence of an arrow indicates a direct causal effect.

* The lack of an arrow Iindicates no direct causal effect.

* Directed acyclic graph (DAG)



I-li! 5=
PARIS
Vl V2 Vl V2
\ / \ / c G=W,E),V=(V,...,V,)
. « PA,,:the parents of V
Vs 3
- V;is a descendant of V,
l l - V;is an ancestor of V;
Vy Vy

* No directed cycle
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« Causal Markov assumption: Conditioned on its parents, VJ IS
independent of its non-descendants.

p(V) = | [ p(v;| PA))
j=1

 Faithfulness assumption: A independent of B given C implies A is “d-
separated” from B given C.

A->Y = P =1)+£pPY="=1)



' PARIS
Graphical Rules
DAG — Independence

7 T

P(Y*=l =1)# P(Y©=) = 1) PY=l =1)=pPY="=1) PY*=l=1)=PY==1)

PY=1|A=1)+#PY=1|A=0) PY=1[A=1)#PY=1[A=0) PY=1[A=1)=PX=1[A=0)

Insight: The two variables are associated if there is a flow of association via the pipes between them.
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Graphical Rules poreres
DAG — Independence o

7 |+—X—A Y
R
-_— —> A /\
A—| X |—Y X|—A Y YI— A Yy
Yd AlX
YU A|X YU A|X |



d-separation - N\ PARIS

(Pearl 1995) Y

1. If there are no variables being conditioned on, a path is blocked if and only if

two arrowheads on the path collide at some variables on the path.

2. Any path that contains a non-collider that has been conditioned on is blocked.

X

3. A collider that has been conditioned on does not block a path.

X

4. A collider that has a descendant that is conditioned on doesn’t block a path.
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Other Challenges

e Confounding bias TN
° U— A—Y
e Selection bias
* Measurement bias T
A Y

* Directed cycles in causal graphs ~_



Exercise

X A Y
..o 0 0
... 0 1
.0 0 0
... 0 0
. T 1
... T 1
.o i 0
.. 1T 1
______________________ i 0 1
. r . 0
.0
I e e
I e e

0
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Q1: Does data come from randomised
experiment, conditional randomised

experiment, or observational study?

Q2: Do we need identifiability conditions?

What are they? Are they satisfied here?

Q3: What is the causal effect of A on Y?
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(A) Cow: 0.99, Pasture: (B) No Person: 0.99, Water: :F" e e

0.99, Grass: 0.99, No Person: 0.98, Beach: 0.97, Outdoors: - - . - -
0.98, Mammal: 0.98 0.97, Seashore: 0.97 (a) Husky classified as wolf (b) Explanation

Beede et al. CHI 2020

¢

Gururangan et al. NAACL 2018

Premise Two dogs are running through a field.
Entailment There are animals outdoors.
Neutral Some puppies are running to catch a stick.

Contradiction The pets are sitting on a couch.

The example provided in the annotation guidelines for SNLI. Some
of the observed artifacts (bold) can be potentially traced back to
Figure 1. A nurse operates the fundus camera, taking images of a pa- phenomena in thlS SpeCifiC example_

tient’s retina.
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Advanced Topics



Part II: Advanced Topics

e Distributional treatment effects
* Instrumental variable (V)

* Proximal causal learning



