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Agenda
Part I: Basic of Causal Inference (14:00 - 15:30)

• A definition of causal effects

• Randomised experiments

• Observational studies

• Graphical causal models 

Part II: Advanced Topics (16:00 - 17:30)

• Distributional treatment effect

• Instrumental variable (IV)

• Proximal causal learning



Part I
Basic of Causal Inference











Prediction Machines



From Prediction to Decision



From Prediction to Decision



From Prediction to Decision



Reliable Decisions
Is a new vaccine effective?



Definition of Causal Effects
Individual Treatment Effects

  : Treatment / Intervention (1: treated, 0: untreated)

 : Counterfactual outcome (1: death, 0: alive)


   : Observed outcome 


Consistency assumption             Individual treatment effect (ITE) 
                                             

A
Ya

Y

Y = YA Ya=1 ≠ Ya=0



Definition of Causal Effects
Average Causal Effect

 : The risk of death if treated

 : The risk of death if untreated


 
Average causal effect 
 

P(Ya=1 = 1)
P(Ya=0 = 1)

P(Ya=1 = 1) ≠ P(Ya=0 = 1)

Alice 1 0

Bob 0 1

Caroline 1 0

Dave 1 0

Eric 0 1

Frederic 1 0

Greg 0 0

Henry 1 1



Definition of Causal Effects
Causation and Association

 : The risk of death in the treated group


 : The risk of death in the untreated group


 

Association between  and  
 

P(Y = 1 |A = 1)
P(Y = 1 |A = 0)

A Y
P(Y = 1 |A = 1) ≠ P(Y = 1 |A = 0)

Alice 0 1

Bob 1 1

Caroline 0 1

Dave 1 0

Eric 0 0

Frederic 1 0

Greg 0 0

Henry 1 1



Definition of Causal Effects
Causation  Association≠

Population

Treated Untreated

Causation Association

P(Ya=1 = 1) P(Ya=0 = 1) P(Y = 1 |A = 1) P(Y = 1 |A = 0)

≠



Randomised Experiments
Causation  Association=

Exchangeability condition:  for all    
              

Ya ⊥⊥ A a

P(Ya = 1 |A = 1) = P(Ya = 1 |A = 0)

Population

Treated UntreatedA = 0A = 1


P(Y = 1 |A = 1) = 0.3
P(Y = 1 |A = 0) = 0.6

Population

Untreated TreatedA = 1A = 0


P(Y = 1 |A = 1) = ?
P(Y = 1 |A = 0) = ?



Randomised Experiments
Causation  Association=

Population

Treated Untreated

Causation Association

P(Ya=1 = 1) P(Ya=0 = 1) P(Y = 1 |A = 1) P(Y = 1 |A = 0)

=



Conditional Randomisation

Design 1:  Randomisation with 65% prob.

Design 2:  75% (critical), 50% (non-critical)




 
 
Conditional exchangeability 
   for all  

P(Ya = 1 |A = 1, X = 1) = P(Ya = 1 |A = 0, X = 1)

Ya ⊥⊥ A | X a

X A Y

Alice 0 0 1

Bob 1 1 1

Caroline 1 1 0

Dave 0 1 0

Eric 0 0 0

Frederic 1 1 0

Greg 0 1 0

Henry 1 0 1



Computing the Causal Effects

1. Standardisation 

2. Inverse probability weighting (IPW)

τA = P(Ya=1 = 1) − P(Ya=0 = 1)



Standardisation
Conditional randomisation design











Standardised mean 




                  

P(Y = 1 |X = 0, A = 1) = P(Ya=1 |X = 0)
P(Y = 1 |X = 0, A = 0) = P(Ya=0 |X = 0)

P(Y = 1 |X = 1, A = 1) = P(Ya=1 |X = 1)
P(Y = 1 |X = 1, A = 0) = P(Ya=0 |X = 1)

P(Ya = 1) = ∑
x∈{0,1}

P(Ya = 1 |X = x)P(X = x)

= ∑
x∈{0,1}

P(Y = 1 |X = x, A = a)P(X = x)

}
}

X = 0

X = 1

X A Y
Alice 0 0 1

Bob 1 1 1

Caroline 1 1 0

Dave 1 1 1

Eric 0 0 0

Frederic 1 1 0

Greg 0 1 0

Henry 1 0 1

Ian 0 1 1

Jake 1 0 0



Standardisation


P(Ya = 1) = ∑
x∈𝒳

P(Y = 1 |X = x, A = a)P(X = x)

P(Ya = 1) = ∫𝒳
P(Y = 1 |X = x, A = a)P(X = x) dx



Inverse Probability Weighting (IPW)

 Y = 0 Y = 1
(0.5) (0.5)

X = 0 X = 1
(0.5) (0.5)

A = 0 (0.5)

A
=

1 (0
.5)

A
=

0
(0.33)

A = 1 (0.66)

11

 Y = 0 Y = 1
(1.0) (0.0)

 Y = 0 Y = 1
(0.0) (1.0)

 Y = 0 Y = 1
(0.66) (0.33)

11 11 22



Inverse Probability Weighting (IPW)

 Y = 0 Y = 1
(0.5) (0.5)

X = 0 X = 1
(0.5) (0.5)
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=
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A = 1 (0.66)

22

 Y = 0 Y = 1  Y = 0 Y = 1
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 Y = 0 Y = 1
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P(Ya=0 = 1) = 5/10



Inverse Probability Weighting (IPW)

 Y = 0 Y = 1

X = 0 X = 1
(0.5) (0.5)

A = 0 (0.5)

A
=

1 (0
.5)

A
=

0
(0.33)

A = 1 (0.66)
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 Y = 0 Y = 1
(1.0) (0.0)

 Y = 0 Y = 1  Y = 0 Y = 1
(0.5) (0.5)

22 00 33

P(Ya=1 = 1) = 5/10



Inverse Probability Weighting (IPW)

 Y = 0 Y = 1

X = 0 X = 1
(0.5) (0.5)

A = 0 (0.5)

A
=

1 (0
.5)

A
=

0
(0.33)

A = 1 (0.66)

2 (1)2 (1)

 Y = 0 Y = 1  Y = 0 Y = 1  Y = 0 Y = 1

2 (1)2 (1) 3 (1)3 (1) 3 (2)3 (2)
(1/0.5 = 2) (1/0.5 = 2) (1/0.5 = 2) (1/0.5 = 2) (1/0.33 ≈ 3) (1/0.66 ≈ 1.5) (1/0.66 ≈ 1.5)(1/0.33 ≈ 3)



Inverse Probability Weighting (IPW)


P(Ya=1 = 1) =
1

2n

n

∑
i=1

Yi

P(A = 1 |X = xi)

P(Ya=0 = 1) =
1

2n

n

∑
i=1

1 − Yi

1 − P(A = 1 |X = xi)



Limitations of Randomised Experiments

• Ideal randomised experiments are hard to implement.


• It can be unethical to conduct randomised experiments


• It is typically expensive and time consuming.


• Double-blind assignment is impossible.


• Some experiments are infeasible.



Observational Studies

OBS Studies  COND Randomisation 

1. Well-defined intervention (consistency)

2. Conditional exchangeability

3. Positivity


Necessary ingredients

1. Identifiability conditions

2. Data

≈X A Y
Alice 0 0 1

Bob 1 1 1

Caroline 1 1 0

Dave 0 1 0

Eric 0 0 0

Frederic 1 1 0

Greg 0 1 0

Henry 1 0 1



Identifiability

Identifiable Non-identifiable

Pdata ⇔ {τ*A } Pdata ⇔ {τ1
A, τ2

A, …}

Assumptions Assumptions



Consistency

1. Precise definition of the counterfactual outcome 


• Heart transplant  and medical therapy 


• The effect of obesity  on the risk of mortality 

2. The linkage of  to .

Ya

A = 1 A = 0
A Y

Ya Y

Y = Ya



Conditional Exchangeability

• It holds by design in (conditional) randomised experiments.


• The validity of this assumption rests on domain experts.


• There can always be an unmeasured confounder .U

Ya ⊥⊥ A |X for all a



Positivity

• It is taken for granted in (conditional) randomised experiments.


• It may hold only for  that are required for exchangeability.


• It can sometimes be empirically verified.

X

0 < P(A = a |X = x) < 1



Effect Modification
There is no such thing as the causal effect of treatment

• 


• Male ( ) and female ( ) 


• 


•

P(Ya=1 = 1) = P(Ya=0 = 1) = 0.5

V = 1 V = 0

P(Ya=1 = 1 | V = 0) = 0.4, P(Ya=0 = 1 | V = 0) = 0.6

P(Ya=1 = 1 | V = 1) = 0.6, P(Ya=0 = 1 | V = 1) = 0.4

Conditional average treatment effect (CATE) 
 

P(Ya=1 = 1 |V) ≠ P(Ya=0 = 1 |V)



Summary

• Individual and average causal effects


• Randomised experiments


• Standardisation and inverse probability weighting (IPW)


• Observational studies


• Conditional exchangeability


• Positivity


• Consistency


• Effect modification



Graphical Causal Models

• A causal diagram consists of a set of nodes and edges.


• The presence of an arrow indicates a direct causal effect.


• The lack of an arrow indicates no direct causal effect.


• Directed acyclic graph (DAG)

X A YA Y



Causal Directed Acyclic Graph (DAG)

• , 


•  : the parents of 


•  is a descendant of 


•  is an ancestor of 


• No directed cycle

G = (V, E) V = (V1, …, Vm)
PAm Vm

Vi Vj

Vj Vi

V3

V1 V2

V4

V3

V1 V2

V4

DAG Non-DAG



Assumptions

• Causal Markov assumption: Conditioned on its parents,  is 
independent of its non-descendants. 
 

                                      


• Faithfulness assumption:  independent of  given  implies  is “d-
separated” from  given .  
 
                     

Vj

p(V) =
m

∏
j=1

p(Vj |PAj)

A B C A
B C

A → Y ⇒ P(Ya=1 = 1) ≠ P(Ya=0 = 1)



Graphical Rules
DAG  Independence→


P(Ya=1 = 1) ≠ P(Ya=0 = 1)
P(Y = 1 |A = 1) ≠ P(Y = 1 |A = 0)

X A YA Y X A Y


P(Ya=1 = 1) = P(Ya=0 = 1)
P(Y = 1 |A = 1) ≠ P(Y = 1 |A = 0)


P(Ya=1 = 1) = P(Ya=0 = 1)
P(Y = 1 |A = 1) = P(Y = 1 |A = 0)

Insight: The two variables are associated if there is a flow of association via the pipes between them.



Graphical Rules
DAG  Independence→

A YX A YX A YX

A YXZ

Y ⊥⊥ A |X Y ⊥⊥ A |X 
Y /⊥⊥ A |X
Y /⊥⊥ A |Z



d-separation
(Pearl 1995)

1. If there are no variables being conditioned on, a path is blocked if and only if 
two arrowheads on the path collide at some variables on the path. 

2. Any path that contains a non-collider that has been conditioned on is blocked. 

3. A collider that has been conditioned on does not block a path. 

4. A collider that has a descendant that is conditioned on doesn’t block a path.

YA X…. ….

YA…. ….X

YA…. ….X

Y A X…. Z

….



Other Challenges

• Confounding bias 


• Selection bias


• Measurement bias


• Directed cycles in causal graphs

U A Y

A Y



Exercise
X A Y
0 0 0
0 0 1
0 0 0
0 0 0
0 1 1
0 1 1
0 1 0
0 1 1
1 0 1
1 0 0
1 0 0
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 0
1 1 0
1 1 0

• Q1: Does data come from randomised 

experiment, conditional randomised 

experiment, or observational study?


• Q2: Do we need identifiability conditions? 

What are they? Are they satisfied here?


• Q3: What is the causal effect of  on ?A Y



Confounding Bias in Machine Learning
Tulio Ribeiro et al. KDD 2016Beery et al. ECCV 2018

Beede et al. CHI 2020
Gururangan et al. NAACL 2018

The example provided in the annotation guidelines for SNLI. Some 
of the observed artifacts (bold) can be potentially traced back to 
phenomena in this specific example.
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Advanced Topics



Part II: Advanced Topics

• Distributional treatment effects

• Instrumental variable (IV)

• Proximal causal learning
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