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Kernelising Linear Methods

▶ Many popular methods in machine learning and statistics are linear,
e.g. linear (ridge) regression, SVM, logistic regression, PCA, ...

▶ However, the real world is often not linear.

▶ Key idea: Embed data into a high- (often infinite-)dimensional
space, carry out a linear method there, and project back down to the
original space to obtain a non-linear model.
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Kernels and RKHS

Some Notations

▶ Denote the domain by X .

▶ We call a symmetric, positive-definite function k : X × X → R a
kernel. This means that
▶ for any x1, x2 ∈ X , k(x1, x2) = k(x2, x1); and
▶ for any α1, ..., αn ∈ R and x1, ..., xn ∈ X ,

∑n
i=1

∑n
j=1 αiαjk(xi , xj) ≥ 0.

▶ Each kernel k is associated to a unique reproducing kernel Hilbert
space (RKHS) H, a space of functions X → R.

▶ For each x ∈ X , k(x , ·) ∈ H.
▶ In fact, H is the closure of the linear span of {k(x , ·) : x ∈ X}.

▶ For any f ∈ H, x ∈ X , f (x) = ⟨f , k(x , ·)⟩H

Examples of Kernels for X = Rd

▶ Linear kernel: k(x1, x2) = x1 · x2, H = Rd .

▶ Polynomial kernel: k(x1, x2) = (x1 · x2 + c)m, dim(H) =
(
d+m
m

)
.

▶ Gaussian kernel: k(x1, x2) = e−γ∥x1−x2∥2
2 , dim(H) = ∞.
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Embedding Data-points

Recall,

▶ Key idea: Embed data into a high- (often infinite-)dimensional
space, carry out a linear method there, and project back down to the
original space to obtain a non-linear model.

We can embed any x ∈ X into H by x 7→ k(x , ·)!

X H

x k(x, ·)

By the reproducing property, ⟨k(x , ·), k(x ′, ·)⟩H = k(x , x ′).
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Example: Classification

Data: (x1, y1), (x2, y2), . . . , (xn, yn), xi ∈ R2, yi ∈ {+1,−1}
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Example: Classification

Model: f (x) = w⊤x + b
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Example: Classification

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
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x 2

Data in Input Space
+1
-1
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Kernel Feature Map

ϕ : (x1, x2) 7−→ (x21 , x
2
2 ,
√
2x1x2)

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
x1

−1.0

−0.5

0.0

0.5

1.0

x 2

Data in Input Space
+1
-1

ϕ1 0.00.20.40.60.81.0
ϕ2

0.20.30.40.50.60.70.80.9

ϕ 3

−0.8
−0.6
−0.4
−0.2
0.0
0.2
0.4
0.6
0.8

Data in Feature Space +1
-1

But observe that

⟨ϕ(x), ϕ(z)⟩R3 = x21 z
2
1 + x22 z

2
2 + 2(x1x2)(z1z2) = (x1z1 + x2z2)

2 = (x · z)2

Model in primal and dual form:

f (x) = w⊤ϕ(x) ⇒ f (x) =
n∑

i=1

αi ⟨ϕ(xi ), ϕ(x)⟩R3︸ ︷︷ ︸
=(xi ·x)2=k(xi ,x)
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Embedding Distributions
▶ Recall, point embeddings: x 7→ k(x , ·) : X → H.

▶ A random variable X taking values in X , with distribution P.

▶ We can embed P into H via “kernel mean embedding”:

P 7→ µP = E [k(X , ·)] =
∫
X
k(x , ·)dP(x).

▶ Given samples X1, ...,Xn from X , an empirical estimate of µP can
easily be obtained:

µ̂P =
1

n

n∑
i=1

k(Xi , ·).

▶ EX∼P [f (X )] = ⟨f , µP⟩H for any f ∈ H.

x

p(x) H

µP

µQ

P
Q
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Characteristic Kernels

▶ Def: A kernel k is characteristic if the map P 7→ µP is injective.

▶ A kernel k being characteristic means that the corresponding RKHS
H is “rich enough” to capture all information about a distribution.

Examples

▶ If k(x1, x2) = x1 · x2, then µP = E[k(X , ·)] = E[X ].
So µP only captures the expectation of P, and so k is not
characteristic.

▶ If k(x1, x2) = e−γ∥x1−x2∥2

, k can be shown to be characteristic.

x

p(x) H

µP

µQ

P
Q
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Maximum Mean Discrepancy
▶ The maximum mean discrepancy (MMD) is defined as

MMD(P,Q) = ∥µP − µQ∥H .

▶ With a characteristic kernel, MMD(P,Q) = 0 ⇐⇒ P = Q!

▶ With samples X1, ...,Xn from P and Y1, ...,Ym from Q, we can use
the MMD to carry out a two-sample test:

M̂MD(P,Q) =
1

n(n − 1)

n∑
i=1

n∑
j ̸=i

k(Xi ,Xj) +
1

m(m − 1)

m∑
i=1

m∑
j ̸=i

k(Yi ,Yj)

− 2

nm

n∑
i=1

m∑
j=1

k(Xi ,Yj)

x

p(x) H

µP

µQ

P
Q
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Witness Functions
▶ Recall, MMD(P,Q) = ∥µP − µQ∥H.
▶ The normand µP − µQ belongs to H, i.e. it is a function X → R.

f (t) ∝ µP(t)− µQ(t)

▶ This is called the (unnormalised) witness function, and by evaluating
it at a particular point, we can identify regions in which the density of
one distribution dominates the other.

Figure: A Kernel Two-Sample Test, Gretton, Borgwardt, Rasch, Schölkopf and
Smola, JMLR 2012.
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Embedding Conditional Distributions

▶ Recall,
▶ point embeddings x 7→ k(x , ·) : X → H and
▶ distribution embeddings X 7→ E[k(X , ·)].

▶ What about conditional distributions?

▶ Let X and Z be random variables taking values in domains X and Z.

▶ Let PX |Z be the conditional distribution of X given Z .

▶ We define the kernel conditional mean embedding of X given Z as

µPX|Z = E [k(X , ·) | Z ] .

▶ Unlike point and (unconditional) distribution embeddings, this is not
a single element in H, but a RV depending on the value of Z .
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Further Information & References

▶ Schölkopf, B. and Smola, A., Learning with Kernels. MIT Press, 2002.

▶ Muandet, K., Fukumizu, K., Sriperumbudur, B. and Schölkopf, B.,
Kernel Mean Embedding of Distributions: A Review and Beyond.
Foundations and Trends in Machine Learning, 2017.

▶ Today Talk: Park, J., Shalit, U., Schölkopf B., and Muandet
K.Conditional Distributional Treatment Effect with Kernel Conditional
Mean Embeddings and U-Statistic Regression. ICML 2021.

▶ Recommended: Kallus, N. and Oprescu, M. Robust and Agnostic
Learning of Conditional Distributional Treatment Effects.
ArXiv:2205.11486, 2022.
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Problem Set-Up: Potential Outcomes Framework

Notations

Probability Space (Ω,F ,P)

Treatment Assignment Z : Ω → {0, 1}
Covariate Variable X : Ω → X
Potential Outcome under Control Y0 : Ω → Y
Potential Outcome under Treatment Y1 : Ω → Y
Observed Outcome Y = (1− Z)Y0 + ZY1

Examples

▶ Drug administration

▶ Patient Characteristics

▶ Measurement without drug

▶ Measurement with drug

▶ Observed measurement

▶ We assume either the randomised control trial setting, or strong
ignorability :
▶ unconfoundedness Z ⊥ (Y0,Y1) | X ; and
▶ overlap 0 < e(X ) = P(Z = 1 | X ) = E[Z | X ] < 1.

▶ Quantities commonly used to measure treatment effect:
▶ Average Treatment Effect (ATE) E[Y1 − Y0]
▶ Conditional Average Treatment Effect (CATE) E[Y1 − Y0 | X ]



18/30

Problem Set-Up: Potential Outcomes Framework

Notations

Probability Space (Ω,F ,P)

Treatment Assignment Z : Ω → {0, 1}
Covariate Variable X : Ω → X
Potential Outcome under Control Y0 : Ω → Y
Potential Outcome under Treatment Y1 : Ω → Y
Observed Outcome Y = (1− Z)Y0 + ZY1

Examples

▶ Drug administration

▶ Patient Characteristics

▶ Measurement without drug

▶ Measurement with drug

▶ Observed measurement

▶ We assume either the randomised control trial setting, or strong
ignorability :
▶ unconfoundedness Z ⊥ (Y0,Y1) | X ; and
▶ overlap 0 < e(X ) = P(Z = 1 | X ) = E[Z | X ] < 1.

▶ Quantities commonly used to measure treatment effect:
▶ Average Treatment Effect (ATE) E[Y1 − Y0]
▶ Conditional Average Treatment Effect (CATE) E[Y1 − Y0 | X ]



18/30

Problem Set-Up: Potential Outcomes Framework

Notations

Probability Space (Ω,F ,P)

Treatment Assignment Z : Ω → {0, 1}
Covariate Variable X : Ω → X
Potential Outcome under Control Y0 : Ω → Y
Potential Outcome under Treatment Y1 : Ω → Y
Observed Outcome Y = (1− Z)Y0 + ZY1

Examples

▶ Drug administration

▶ Patient Characteristics

▶ Measurement without drug

▶ Measurement with drug

▶ Observed measurement

▶ We assume either the randomised control trial setting, or strong
ignorability :
▶ unconfoundedness Z ⊥ (Y0,Y1) | X ; and
▶ overlap 0 < e(X ) = P(Z = 1 | X ) = E[Z | X ] < 1.

▶ Quantities commonly used to measure treatment effect:
▶ Average Treatment Effect (ATE) E[Y1 − Y0]
▶ Conditional Average Treatment Effect (CATE) E[Y1 − Y0 | X ]



19/30

Treatment Effect Quantification

But...

▶ Estimating ATE and CATE is inherently a problem of comparing two
means, and as such, is only meaningful if the corresponding variances
are given.

▶ Other distributional aspects could also be of interest, e.g. skewness.
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Progresa: Conditional Cash Transfer programme in Mexico

▶ Investigation of how the programme affects the average food
consumption.

Figure: Treatment effects beyond the mean using distributional regression:
Methods and guidance, Hohberg, Pütz and Kneib, 2020
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22/30

Progresa: Conditional Cash Transfer programme in Mexico

▶ Investigation of how the programme affects the average food
consumption.

Figure: Treatment effects beyond the mean using distributional regression:
Methods and guidance, Hohberg, Pütz and Kneib, 2020
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Conditional Distributional Treatment Effect

▶ Definition: Let D be some distance function between probability
measures. We define the conditional distributional treatment effect
(CoDiTE) associated with D as

UD(x) = D(PY0|X=x ,PY1|X=x).

▶ Depending on the distance D chosen, we can extract and compare
different aspects of the control and treatment distributions.

▶ Examples:
▶ We recover the CATE by setting D(PY0|X ,PY1|X ) = E[Y0 − Y1 | X ].
▶ Other works have considered D capturing quantiles, cumulative

distribution functions or specific distributional parameters, such as
mean, variance, skewness, etc.

▶ In our work, we characterise distributions via kernel mean embeddings.

▶ The CoDiTE has a causal interpretation under the same assumptions,
i.e. RCT or strong ignorability.
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Testing Equality of Control and Treatment Groups
CoDiTE with MMD

▶ Recall, CoDiTE: UD(x) = D(PY0|X=x ,PY1|X=x).

▶ Let D be the MMD, so that UD(x) represents the MMD between the
control and treatment distributions:

UMMD(x) = ∥µY1|X=x − µY0|X=x∥H.

▶ By integrating over X , we obtain a statistic to test for the equality
between the distributions of control and treatment groups:

t = E
[
∥µY1|X − µY0|X∥

2
H
]
.
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Exploratory Analysis of Conditional Densities
CoDiTE with MMD

▶ Recall, CoDiTE with MMD: UMMD(x) = ∥µY1|X=x − µY0|X=x∥H.

▶ Instead of taking the norm in H, we can evaluate the normand
(recall, it is the witness function) at each value of y .

fx(y) ∝ µY1|X=x(y)− µY0|X=x(y)

▶ We can then visually compare the conditional densities of the control
and treatment groups.
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U-Statistic Regression

▶ Usual regression estimates the conditional mean, E[Y |X ].

▶ But other quantities of interest, most prominently the conditional
variance, can be expressed as a generalisation, as conditional
U-statistics:

E [h(Y1, ...,Yr ) | X1, ...,Xr ] .

▶ For example, h(Y1,Y2) =
1
2 (Y1 − Y2)

2 gives the conditional variance.

▶ We generalise kernel ridge regression accordingly, to estimate the
conditional variance.
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Semi-Synthetic IHDP Data
Bayesian Nonparametric Modeling for Causal Inference, Hill, 2011

▶ Real covariates, simulated outcome for control and treatment.

▶ Existing simulations in the context of CATE estimation: constant
Gaussian noise across the entire covariate space.

▶ Using the same mean response surfaces, we simulate the data under
three settings:
▶ Small Noise (SN) Noise is small across the covariate space, so that

CATE translates to a meaningful treatment effect.
▶ Large Noise (LN) Noise is large such that the mean difference is

negligible in comparison.
▶ Heterogeneous Noise (HN) Noise is heterogeneous across the

covariate space, resulting in meaningful treatment effect for some
parts of the population and not others.
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Remarks & Limitations

▶ A policy intervention or a counterfactual change can have non-trivial
effects on a population.

▶ Compared to the mean effects, the distributional effects can be harder
to interpret (conditional witness function and U-statistic regression).

▶ Distributional considerations of treatment effect is pertinent also in
the gold standard randomised control setting, as well as the more
common observational studies.

▶ On the other hand, we made no effort to account for selection bias.

▶ Facilitate an algorithmic decision making, e.g., counterfactual fairness.

▶ Our methods are all based on variants of kernel ridge regression, and
as such, are sensitive to the choice of hyperparameters.

▶ Also, when the covariate space becomes high-dimensional,
performance deteriorates rapidly.
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