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Unobserved Confounder / Spurious Correlation

Causal Inference

Education (X) → Income (Y )

Machine Learning

U

batch effect, domain shift, human bias, adversarial attack, etc.

X

Y (COVID-19)

Y = f (X) + εu

[UAI 2020; NeurIPS 2020; ICML 2021; Zhang et al. Under Review]
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Spurious Correlation

I An interventional distribution P(Y | do(X = x)).

I P(Y | do(X = x)) 6= P(Y |X = x) observational distribution

X Y

U

P(Y |X = x)

x Y

U

P(Y | do(X = x))

I The confounder U creates a spurious correlation between X and Y .

X = smoking (cigarettes smoked)

Y = lung cancer deaths

P(Y |X = x) = observed dealths from data

do(X = 0) = smoking banned

P(Y | do(X = 0)) = dealths after the ban
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Additive Noise Model
Newey and Powell (2003); Hoyer et al. (2008); Peters et al. (2014)

X Y

U Structural Equations

Y ← f (X) + ε(U ), E[ε] = 0

X ← g(U ) + ν, E[ν] = 0

I CI: E[Y | do(X = x)] = f (x) ML: E[Y |X = x] = f (x)

E[Y |X = x] = f (x) + E[ε | x]

I Estimate Ê[Y |X = x] from the sample (x1, y1), . . . , (xn, yn) ∼ P(X ,Y )

I A biased estimate of E[Y | do(X = x)].

I The estimate Ê[Y |X = x] can be unstable because of E[ε | x].

I Impossible to recover f (x) without further assumptions.
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I Estimate Ê[Y |X = x] from the sample (x1, y1), . . . , (xn, yn) ∼ P(X ,Y )

I A biased estimate of E[Y | do(X = x)].
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Instrumental Variables

Assumptions
1. Relevance: P(X |Z) is not constant in Z .
2. Exclusion restriction: Z affects Y only through X .
3. Unconfoundedness: Z is independent from U .

[Angrist and Krueger (1991); Angrist and Krueger (2001)] Nobel Prize 2021
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Nonparametric Instrumental Variable Regression
Newey and Powell (2003, Econometrica)

Assumptions
1. Relevance: P(X |Z) is not constant in Z .
2. Exclusion restriction: Z affects Y only through X .
3. Unconfoundedness: Z is independent from U .

I Taking the conditional expectation wrt Z on both sides

Y = f (X) + ε

E[Y |Z ] = E[f (X) |Z ] + E[ε |Z ]︸ ︷︷ ︸
=E[ε]=0

I A Fredholm integral equation of the first kind

E[Y |Z ] =

∫
f (x) dP(x |Z)

I Completeness condition [D’Haultfoeuille (2011, Econ Theory)]

For all measurable functions g, E[g(X) |Z ] = 0 a.s. ⇒ g(X) = 0 a.s.
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Fredholm Integral Equation: Two-Stage Estimation
Population risk

min
f∈F

EZ
[
(E[Y |Z ]− EX|Z [f (X)])2

]
Empirical risk: (xi, yi, zi) ∼ P(X ,Y ,Z)

min
f∈F

1

n

n∑
i=1

[
(Ê[Y | zi]− ÊX|zi [f (X)])2

]

Previous work
I 2SLS [Angrist and Imbens (1996)]
I SieveIV [Newey and Powell (2003)]

I DeepIV [Hartford (2017, ICML)]
I KernelIV [Singh (2019, NeurIPS)]

Challenges
I Require data splitting for two-stage estimation.
I Estimate P(X |Z) using one observation from P(X |Z = z).
I The first stage is known as “forbidden regression” in econometrics.
I It violates Vapnik’s principle [Vapnik 1998].
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(Ê[Y | zi]− ÊX|zi [f (X)])2

]
Previous work
I 2SLS [Angrist and Imbens (1996)]
I SieveIV [Newey and Powell (2003)]

I DeepIV [Hartford (2017, ICML)]
I KernelIV [Singh (2019, NeurIPS)]

Challenges
I Require data splitting for two-stage estimation.
I Estimate P(X |Z) using one observation from P(X |Z = z).
I The first stage is known as “forbidden regression” in econometrics.
I It violates Vapnik’s principle [Vapnik 1998].



7/15

Fredholm Integral Equation: Two-Stage Estimation
Population risk

min
f∈F

EZ
[
(E[Y |Z ]− EX|Z [f (X)])2

]
Empirical risk: (xi, yi, zi) ∼ P(X ,Y ,Z)

min
f∈F

1

n

n∑
i=1

[
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DualIV: From Two-Stage Estimation to Two-Player Game
Muandet, Mehrjou, Lee, Raj. (2020, NeurIPS); Liao et al (2020, NeurIPS)

min
f∈F

R(f ) = min
f∈F

EZ [(E[Y |Z ]− EX|Z [f (X)])2]

(a)
= min

f∈F
EZ [max

u∈R
{EX|Z [f (X)]u − E[Y |Z ]u − 1

2
u2}]

(b)
= min

f∈F
max
u∈U

EZ [EX|Z [f (X)]u(Z)− E[Y |Z ]u(Z)− 1

2
u2(Z)]

= min
f∈F

max
u∈U

EZ [(EX|Z [f (X)]− E[Y |Z ])u(Z)− 1

2
u2(Z)]

= min
f∈F

max
u∈U

EXYZ [(f (X)− Y )u(Z)− 1

2
u2(Z)]min

f∈F
max
u∈U

EXYZ [(f (X)− Y )u(Z)− 1

2
u2(Z)]min

f∈F
max
u∈U

EXYZ [(f (X)− Y )u(Z)− 1

2
u2(Z)]

(a) Fenchel duality: Let `y(·) = `(y, ·) be a convex loss. For `(y, y′) = (y − y′)2,

`y(v) = max
u

{uv − `?y(u)}, `?y(u) = uy +
1

2
u2.

(b) Interchangeability: Eω[maxu∈R f (u, ω)] = maxu(·)∈U Eω[f (u(ω), ω)].

Dai et al. (2017; Lemma 1), Rockafellar and Wets (1998; Ch. 14), and Shapiro et al. (2014; Ch. 7)
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DualIV: From Two-Stage Estimation to Two-Player Game
Muandet, Mehrjou, Lee, Raj. (2020, NeurIPS); Liao et al (2020, NeurIPS)

[Liao et al (2020, NeurIPS); Bennett et al. (2019, NeurIPS); Muandet et al. (2020, UAI);
Dikkala et al. (2020, NeurIPS); Zhang et al. (2022, Under Review)]
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DualIV: From Two-Stage Estimation to Two-Player Game
Muandet, Mehrjou, Lee, Raj. (2020, NeurIPS); Liao et al (2020, NeurIPS)

Data: (x1, y1, z1), . . . , (xn, yn, zn) ∼ P(X ,Y ,Z)

I Adversarial learning (F = {fψ : ψ ∈ Rq} and U = {uθ : θ ∈ Rp})

min
ψ∈Rq

max
θ∈Rp

1

n

n∑
i=1

[(yi − fψ(xi))uθ(zi)]−
γ

2
‖uθ‖2 +

λ

2
‖fψ‖2

I M-estimators (A unit ball within an RKHS, i.e., U = {u : HkZ , ‖u‖ ≤ 1})

min
f∈F

RV (f ) = 1

n2

n∑
i=1

n∑
j=1

(yi − f (xi))kZ(zi, zj)(yj − f (xj)) +
λ

2
‖f ‖2

I Kernel machines (F ∈ HkX and U = {u : HkZ , ‖u‖ ≤ 1})

f (x) =
n∑

i=1

αikX (xi, x), α = (KLK + λK)−1KLy

where Kij = kX (xi, xj), Lij = kZ(zi, zj)/n2, and y = (y1, . . . , yn)
>.

[Bennett et al. (2019, NeurIPS); Muandet et al. (2020, UAI); Dikkala et al. (2020, NeurIPS); Zhang et al. (2022, UR)]
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DualIV: From Two-Stage Estimation to Two-Player Game
Muandet, Mehrjou, Lee, Raj. (2020, NeurIPS)

Demand design: Y = f (X) + ε where X = (P,T ,S) and Z = (C ,T ,S)
I Y : sale, P: price, (T ,S): time of year and customer sentiment
I Sale Y and price P are confounded by supply-side market forces
I C : supply cost shifter (instrument)

Improvement over two-stage methods: ∼20% (n = 50) and ∼9% (n = 1000)
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Vitamin D Data

40 50 60 70 80
Age

0

50

100

150

200

Vi
ta

m
in

 D
alive
dead

40 50 60 70 80
0.0

0.1

0.00 0.01

0

50

100

150

200

I A 10-year study on 2571 individuals aged 40–71.
I There are 4 variables:

1. Age (at baseline)

2. Filaggrin (binary indicator of filaggrin mutations)

3. VitD (vitamin D level at baseline)

4. Death (binary indicator of death during study)
I The goal is to evaluate the potential effect of VitD on Death.

X = VitD, Y = Death, Z = Filaggrin
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Vitamin D Data

Death = f (VitD,Age)
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(a) Kernel Ridge Regression (IV: None)
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(b) Our Method (IV: Filaggrin Mutation)
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Proximal Causal Learning with Kernels
Mastouri, Zhu, Gultchin, Korba, Silva, Kusner, Gretton, Muandet (2021, ICML)

Instrumental Variable

X
YZ

U

Proxy Variables

X Y

Z W
U

I Treatment-inducing proxy Z and outcome-inducing proxy W

I The causal effect estimation

E[Y | do(X = x)] = EW [h(x,W )]

where h is a confounding bridge function satisfying an integral equation

E[Y | x, z] =
∫

h(x,w) dP(w | x, z)

I The impact of legalized abortion (X) on crime (Y ) [Donohue and Levitt (2001)]
(Supreme Court’s 1973 decision in Roe v. Wade)

I The impact of grade retention (X) on cognitive outcome (Y ) [Deaner (2018)]

[Miao et al. (2018, Biometrika)]
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Fantastic “Instruments” and Where to Find Them

Mendelian Randomization
[Adam (2019, Nature)]

Issue: weak instruments

Judge Leniency Design
[Kling (2006, AER)]

Issue: algorithmic decision making

Adversarial Examples
[N.A.]

Issue: prone to adversarial attack

Algorithmic Instruments
[Ngo et al. (2021, ICML)]

Issue: non-compliance
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